
9. Escriban en su cuaderno lo que observan en términos de la medida del radio y el valor de su área y circunferencia.

Sesión 3

Análisis gráfico de $y = x^2$ y $y = x^2 + c$

1. Trabajen en equipo. Contesten las preguntas que se les plantean. La parábola que se muestra es la representación gráfica de la función $y = x^2$.

$$y = x^2$$

Dato interesante

Se llama plano o sistema cartesiano al diagrama de coordenadas que se usa para representar gráficamente funciones matemáticas y ecuaciones de geometría analítica. Fue creado por el filósofo y matemático René Descartes (1596-1650), de donde tomó su nombre.

a) En esta función, cada valor de *y* se calcula elevando al cuadrado el valor de *x*. Completen la tabla de valores de esta función.

Tabla de valores de la función $y = x^2$										
Х	-4	-3	$-\frac{5}{2}$	-1	0	1	<u>5</u> 2	3	4	
$y = x^2$										

c)	La ecuación cuadrática asociada a esta función es $x^2 = 0$. ¿Se cumple que ese
	punto de corte represente la solución de la ecuación $x^2 = 0$?
	¿Por qué?

- **2.** Hagan la gráfica de $y = x^2 4$ en el plano cartesiano en el que ya está dibujada la gráfica de $y = x^2$ y describan en qué se parecen y en qué son diferentes.
 - a) Completen la tabla de las funciones descritas en las actividades 1 y 2.

Tabla de valores de las funciones $y = x^2$ y $y = x^2 - 4$									
Х	-3	$-\frac{5}{2}$	-1	0	1	<u>5</u> 2	3		
$y = x^2$									
$y=x^2-4$									

- **b)** ¿De qué manera se relacionan los valores de la función $y = x^2 4$ con los de $y = x^2$?
- c) ¿En cuántos puntos corta la gráfica de la función $y = x^2 4$ al eje X?_____ ¿Cuáles son los valores de las abscisas de esos puntos?_____
- **d)** ¿Cuáles son las soluciones de la ecuación $x^2 4 = 0$ de acuerdo con la gráfica? $x_1 =$ $x_2 =$
- e) La ecuación $x^2 4 = 0$ es de la forma $ax^2 + c = 0$. ¿Cuál es, en este caso, el valor de a? ______ ¿Cuál es el valor de c? ______
- **f)** Verifiquen en su cuaderno que la ecuación $x^2 4 = 0$ es equivalente a la ecuación (x + 2)(x 2) = 0 y que ambas se satisfacen con las soluciones que muestra la gráfica que trazaron.
- 3. En grupo, y con ayuda de su maestro, revisen sus respuestas y, en caso necesario, corrijan.
 - a) Comenten y contesten en su cuaderno.
 La función de la cual se obtiene la ecuación x² 4 = 0 es de la forma y = ax² + c.
 ¿Por qué creen que en un caso la expresión ax² + c se iguala a 0 y en el otro a la variable y? ¿Cuál es la diferencia entre una función y una ecuación?

b) Lean y comenten lo siguiente.

En general, a una función f(x) se le puede asociar una ecuación cuando interesa estudiar los puntos donde la gráfica de la función interseca con el eje X, esto es, cuando f(x) = 0.

 $y = x^2 + x$

4. Observen el recurso audiovisual ¿Función o ecuación? para continuar analizando representaciones gráficas y tabulares de funciones y cuándo y cómo se establece una ecuación a partir de ellas.

Sesión 4

Para terminar

Funciones con la forma $y = ax^2 + bx$

- 1. Trabajen en equipo. Contesten las preguntas y hagan lo que se indica. La parábola que se muestra es la representación gráfica de la función $y = x^2 + x$.
 - a) De acuerdo con la gráfica, ¿cuáles son las soluciones (o raíces) de la ecuación $x^2 + x = 0$?

- **b)** La ecuación $x^2 + x = 0$ es de la forma $ax^2 + bx = 0$, es decir, una ecuación incompleta, ¿cuál es el término que le falta?

 ______ ¿Cuál es el valor de a?

 ¿Cuál es el valor de b?
- c) Verifiquen en su cuaderno que la ecuación $x^2 + x = 0$ es equivalente a la ecuación en su forma factorizada: x (x + 1) = 0 y que ambas se satisfacen con las soluciones que escribieron.
- **d)** La ecuación x(x + 1) = 0 se trata de una multiplicación de dos factores cuyo resultado es cero. Expliquen por qué al menos uno de los dos factores tiene que ser igual a cero.
- e) Si suponemos que el primer factor es x = 0, ¿cuál es el valor de x_1 ?
- f) Si suponemos que el segundo factor es x + 1 = 0, ¿cuál es el valor de x_2 ?
- g) Verifiquen que estas soluciones sean las mismas que se aprecian en la gráfica.
- h) Describan el procedimiento para resolver una ecuación de segundo grado de la forma $ax^2 + bx = 0$.