

Rapidez y velocidad

Imagina que cierto día vas a tu escuela caminando y no tienes prisa, pero al día siguiente se te hace tarde y decides ir en bicicleta para llegar puntual. En los dos casos, si sigues el mismo camino, la distancia de la casa a la escuela es igual. En realidad, lo que cambiará será el tiempo transcurrido porque, en el primer caso, irás lento y en el segundo rápido.

Dicha relación entre la distancia y el tiempo se llama rapidez y se define como la distancia recorrida por un objeto entre el tiempo que le lleva hacerlo. Identificamos la relación matemática de la rapidez con la siguiente fórmula:

$$r = \frac{d}{t}$$

Donde r es rapidez, d corresponde a la distancia recorrida y t al tiempo
empleado en recorrerla; por ejemplo, si caminas 1200 metros para
llegar a tu escuela y tardas 12 minutos, ¿con qué rapidez te moviste?
Para realizar las operaciones debes utilizar el sistema de unidades MKS,
que forma parte del Sistema Internacional (SI), el cual es una conven-
ción adoptada por nuestro país. En la tabla 1.1 puedes consultar las
unidades MKS.

En el ejemplo mencionado, es necesario convertir los minutos a se-

1 min = 60 s
12 min = x
$$x = \frac{(12 \text{ min})(60 \text{ s})}{(1 \text{ min})} = \frac{(12)(60 \text{ s})}{1} = 720 \text{ s}$$

gundos. Así, para este caso, se hace una conversión de unidades:

Por lo tanto:
$$r = \frac{d}{t} = \frac{1200 \text{ m}}{720 \text{ s}} = 1.66 \frac{\text{m}}{\text{s}}$$

La rapidez tiene unidades de distancia entre tiempo, $\frac{m}{s}$ o m/s, que se leen indistintamente "metro entre segundo" o "metro por segundo".

Ahora bien, ¿cuál sería tu rapidez si vas en bicicleta y transcurren solamente cinco minutos?

Se realiza la conversión: (5 min)(60 s) = 300 s

El resultado de la rapidez es:
$$r = \frac{d}{t} = \frac{1200 \text{ m}}{300 \text{ s}} = 4 \frac{\text{m}}{\text{s}}$$

De esta forma, demostramos que la física describe la relación entre la distancia y el tiempo que emplea un objeto en hacer un recorrido. Así, es posible comparar el movimiento de diferentes objetos y explicar por qué algunos son más rápidos que otros; por ejemplo, la rapidez de un avión y la de un automóvil.

MKS Magnitud **Unidad** Símbolo Longitud Metro m Masa Kilogramo kg Segundo Tiempo S

Tabla 1.1 Sistema de unidades MKS.

Todo cambia

En el siglo XVIII el coche de colleras era jalado por seis mulas o caballos y alcanzaba una rapidez de 60 km/h. Actualmente, el auto más veloz del mundo alcanza una rapidez de 434 km/h. ¿Cómo imaginas que serán los medios de transporte dentro de unos años?

